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Abstract 
Prior space missions have not routinely used onboard 
decision-making.  The Autonomous Sciencecraft (ASE), 
flying onboard the Earth Observing One spacecraft, has 
been flying autonomous agent software for the last decade 
that enables it to analyze acquired imagery on board and use 
that analysis to determine future imaging. However ASE 
takes approximately one hour to analyze and respond. 
This paper describes a scheduling prototype for the Earth 
Observing Autonomy (EOA) project to increase the 
responsiveness of spacecraft flight software for onboard 
decision-making as well as to increase the capabilities of 
flight software. Specifically, we target onboard image 
analysis and response within a single orbital overflight at 
low Earth orbit (about eight minutes). We focus on the re-
scheduling of the future image acquisitions in the context of 
an existing set of requests along with new requests based on 
onboard analysis of just acquired imagery.  We describe a 
greedy, constructive, scheduler with O(n2) performance and 
present preliminary results on its performance.   

 Introduction   
The Earth Observing Autonomy (EOA) project targets the 
development of a spacecraft autonomy capability to enable 
a wide range of Earth Observing, pointing spacecraft (e.g., 
Earth Observing One [Ungar et al. 2003], The Spot 
constellation [Wikipedia Spot 2015], Orbview Class 
spacecraft (such as Worldview-3)  [Ball, 2015, Wikipedia 
Worldview-3 2015] to image, analyze the image, and re-
image based on that analysis within a single overflight, 
imposing a responsiveness constraint of 5-8 minutes.  This 
would represent a dramatic improvement over the current 
state of the art, ASE [Chien et al. 2005], which responds 
within roughly 1 hour. 
 We describe a software prototype of the EOA capability 
that includes several autonomy components: 
1.    Onboard science processing algorithms. Science 

analysis algorithms process onboard image data to 
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detect science events and suggest reactions to 
maximize science return.  Specifically we investigate 
the use of the Mixture –tuned Match Filter (MTMF) 
[Boardman and Kruse 2011] for onboard spectral 
analysis of acquired imagery. However ASE has 
already demonstrated the utility of thermal analysis for 
volcanoes and wildfires [Davies et al. 2006], spectral 
analysis for flooding [Ip et al. 2006], spectral analysis 
for cryosphere study [Doggett et al. 2006], as well as 
spectral unmixing for mineralogical analysis 
[Thompson et al. 2012].   

2.    Onboard planning and scheduling software. The 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [Chien et al. 2000] 
combined with the Eagle Eye Mission Planning 
Software [Knight et al. 2013] system generates a 
baseline mission operations plans from observation 
requests.  This baseline plan is subject to considerable 
modification onboard in response to data analysis from 
step 1. The model-based planning algorithms enable 
rapid response to a wide range of operations scenarios 
based on models of spacecraft constraints.  However, 
in this paper we focus on a greedy, constructive, non-
backtracking scheduler designed specifically for this 
application. 

3.    Robust execution software. The JPL core flight 
software [Weiss 2013] (CFS) expands the CASPER 
mission plans to low-level spacecraft commands and 
includes a powerful and expressive sequencing engine. 
The CFS sequencing engine monitors the execution of 
the plan and has the flexibility and knowledge to 
perform improvements in execution as well as 
procedural responses to execution anomalies. 
 

One challenge to spacecraft autonomy is limited computing 
resources. An average spacecraft CPU offers 200 MIPS 
and 128 MB RAM – far less than a typical laptop 
computer. For the EOA prototype, we baseline a Rad 750 
or Leon processor for all of the autonomy capability. 
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 EOA demonstrates an integrated autonomous mission 
response capability using onboard science analysis, 
replanning, and robust execution. EOA performs intelligent 
science data analysis, and spacecraft retargeting.  This 
capability can reduce data downlinked in cases where 
onboard analysis determines the data not of interest (e.g. 
search for active volcanos and return only images that 
contain active volcanos).  This capability can also enable 
an increase in science return.  In many cases, a mission is 
not limited by observation time, but rather by downlink 
volume. In these cases, if the spacecraft can acquire 
imagery searching for a specific signature and not return 
the data if the signatures not found, then search can be 
made much more efficient. Specifically, the spacecraft can 
search  for active volcanoes a large amount of the time, and 
only pay the downlink cost proportional to the number of 
images with active volcanoes rather than the total number 
of images acquired searching for active volcanoes.  In 
cases where phenomena may be short-lived, onboard 
detection may enable additional data to be acquired, 
gathering more science data on the scarce phenomena (e.g. 
when detecting an active volcano, add requests to image it 
more frequently and in greater detail). 
 The execution flow of the EOA software is shown in 
Figure 1.  As the spacecraft overflys targets, it images 
them.  As the imagery is acquired, it is processed onboard 
the spacecraft.  Based on the operations policies of the 
missions, this analysis may result in new image requests.  
These image requests are folded into the prior image 
requests and a new schedule is constructed that may 
acquire the new image and may change other images 
acquired (such as pre-empting a less valuable target).  
Spacecraft execution then continues. 

These capabilities enable radically different missions with 
significant onboard decision-making allowing new ways to 
conduct science from space. The paradigm shift toward 
highly autonomous spacecraft will enable future space 

missions to achieve significantly greater science returns 
with reduced risk and reduced operations cost. 
In this paper, as the meeting topic is planning and 
scheduling, we focus on the rescheduling portion of the 
overall responsiveness of the mission.   We begin by 
describing the overall on board response scenario to show 
the overall mission timeline and the context of 
rescheduling. 

Autonomous Science Scenario 
Our onboard planning capability is designed to support an 
EOA mission scenario. While the EOA software is 
designed to support a wide range of spacecraft without any 
modification, in this section, we describe a scenario with a 
Worldview-3 like spacecraft [Ball 2015, Wikipedia 2015] 
to image science targets, process and analyze onboard 
image data, and re-plan operations based on science 
results.  
 For this demonstration we assume several baseline 
mission parameters.  

 
Parameter Value 
Orbit 950 km Sun synchonous 
Initial Science Images 30-40° lookahead from nadir 
Response image Nadir to 20° lookahead 
Spacecraft slew rate 4.5° per second, instantaneous 

start and stop, no settle time 
Imaging time Dwell of 1s per image 
Image request granule 
"footprint" 

0.5 km along track x 4 km 
across track 

 
In Figure 1 we highlight some of the geometry 
characteristics of the EOA scenario.   As the spacecraft 
orbits the earth, it has several viewing windows. The first 
viewing window is the initial science image window which 
covers from 31 to 38° in front of the spacecraft. The 
second viewing window is the response image which 
covers from 0° lookahead (nadir) to 28° lookahead. As the 
spacecraft flies over the earth it is imaging in large number 
of locations in the initial science window.   As it acquires 
this imagery, software analyzes the imagery onboard the 
spacecraft.  This analysis indicates the possible need to 
take follow-up imagery (in the response imaging window).   
For example, in the initial science window we might search 
for the thermal signature of a volcanic eruption or wildfire.  
In the response window we might further image to 
precisely determine the extent of the lava flow and the 
exact temperature map of the flow.   
The goal of the scheduler is to accommodate as many of 
the initial science and response imaging requests but is 
guided by the priority of the requests and restricted by the 
pointing and slewing capabilities of the spacecraft (as well 
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as any other operations constraints).  As shown in Figure 2, 
from a side view, the speacecraft must slew forwards and 
backwards looking a variable amount ahead to view the 
image targets.  At the same time, the spacecraft is moving 
forwards due to orbital motion (at approximately 7.5km 
per second).  Because processing the images requires some 
time, the initial search window is significantly ahead of the 
response window.  This enables initial search-ed images to 
be processed/analyzed in time to allow for scheduling of 
followup imagery in the response window.  The response 
window does not extend behind the spacecraft in order to 
maintain consistent lighting conditions. 
 This slewing forwards and backwards along the 
spacecraft motion track is complicated by two things.  
First, the angle at which the spacecraft must look forward 
to view the target is a non linear function of when the 
spacecraft wishes to view the target. Specifically, at nadir, 
for the Earth, in a 950km orbit, 1 degree of lookahead 
corresponds to 16.6 km ahead of nadir in the ground track.  
However, at 37° of lookahead, 1° of further lookahead  
(e.g. to 38° lookahead) corresponds to 30.7 km ahead in 
the ground track.  The second issue is that typically the 
slew rate of the spacecraft is not linear, there is a ramp up 
acceleration of the spacecraft to some maximum slew rate, 
a portion of the slew at the maximum rate, then a ramp 
down as the spacecraft arrives at the desired position.   
 Figure 2, Case 1 shows these two factors from the 
spacecraft pointing perspective.  In this example the 
spacecraft is looking ahead and wants to view a target 
further ahead beyond the current look angle.  The spaceraft 
could  simply wait until the target comes into view, or it 
can slew ahead to meet the target.  The blue line shows the 
track of a fixed point on the ground in terms of the look 
angle from the spacecraft as the spacecraft approaches the 
point.  This line indicates that at time 0 the target is at 42° 
lookahead.  The red line shows the angular position of the 
spacecraft reachable from the starting point of nadir as a 
function of time.  The intersection of these two lines shows 
the earliest possible time that the spacecraft can view the 
target.  The graph indicates that if the spacecraft begins 
slewing it will be able to reach the target but that the target 
will be at 38° lookahead when it is reached.  In this case 

the motion of the spacecraft is helping us to meet the target 
earlier. 
 The right side of Figure 2 shows a different case, Case 2.  
In Case 2, the spacecraft is pointing at 38° lookahead, and 

wants to next view a target currently at 20° lookahead.  In 
this case the spacecraft motion is carrying the target 
(relative to the spacecraft) away from the current 
spacecraft pointing and the slew must catch up.  The graph 
shows that the by the time that the spacecraft can view the 
target it will be at 17° lookahead. 
 Figure 4 is a view from above the spacecraft looking 
down on the Earth.  As the spacecraft moves along track 
(from left to right in Figure 4), the spacecraft must also 
slew across track (up and down in the Figure) as well as 
forwards and backwards along the ground track (left and 
right in the Figure) to image targets. 

 
This scheduling problem is a challenging one for several 
reasons. 
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1. The spacecraft has limited ability to slew from 
one target to the next (e.g. each slew takes up 
valuable time). 

2. Targets are distributed across the ground track of 
the spacecraft so that the amount of time required 
to image a target depends on the preceding and 
following (temporally) targets in the schedule. 

3. Because the initial viewing and response doing 
windows are separated angularly, slewing back 
and forth between these windows can be wasteful 
of time. 

4. Image analysis takes time.  During this time 
spacecraft is moving towards the target(s).  This is 
the reason why the initial image analysis and 
response image analysis windows are not 
overlapping, to allow the onboard software time 
to analyze the images. 

5. Generating the schedule also takes time (the focus 
of this paper). 

6. When calculating a start time to schedule an 
observation of a target, the spacecraft intercepts 
the target.  The spacecraft must slew to a given 
position (of the target), reaching that position at 
the exact time that the target is in that position 
relative to the spacecraft. This requires an 
accurate model of the spacecraft slew time as well 
as the ability to project where relative to the 
spacecraft any target will be at any point in time. 

7. In addition to pointing, the scheduler must 
consider other resources such as power, thermal, 
data volume (e.g. [Chien et al. 2010, Chien et al. 
2012]).  However in this paper we focus on the 
pointing and slewing aspect of the problem as the 
state and resource management aspect of the 
problem has been considered elsewhere. 

 
In order to simplify the scheduling problem we first 
transform the image request locations from a <latitude, 
longitude, altitude> coordinate frame of reference to an 
<along track, across track> frame of reference (in this 
process using a model of the spacecraft orbit). From this 
<along the track, across track frame of reference>, 
combined with the spacecraft orbit, the set of valid times to 
view any target in the initial viewing window or response 
window is easily computed. 
 
R = {r1,…rn} sorted from highest priority to lowest priority 
 
achieved_requests = {} 
best_solution = nil 
for adding_request ∈{r1…ra} 
  call schedule( achieved_requests ∪ {adding_request}); 
  if success then  
 achieved_requests ← achieved_requests ∪ {adding_request} 

 best_solution ← solution returned by schedule 
 
 
Schedule(request_set = {r1…ra}) 
Sort request set by earliest start time  
   (e.g. request with earliest start time is first in set) 
current_solution = {} 
for current_request ∈{r1…ra} 
 attempt to add current_request to current_solution  
 by scheduling it at the earliest possible time that  
 it will fit into the schedule 
 if cannot add return FAIL 
 else (success} continue 
return current_solution 
 
This scheduling algorithm represents a greedy outer loop 
where we try to add requests in priority order.  The inner 
loop is given a set of requests, and attempts to schedule 
them sweeping forward in time considering earliest 
possible start time requests first. 
 Figure 5 shows the inner loop of the scheduler.  In figure 
5a the two headed arrows indicate the earliest and latest 
possible times each image can be acquired.  The longer 
intervals are response images and the shorter intervals are 
initial search requests.  In Figure 5a the requests are sorted 
by earliest possible start time.  Figure 5b shows the 
requests being scheduled.  The software tries to add each 
request in the earliest start time sorted order, adding the 
request to the schedule as early as possible.  The orange 
blocks indicate the slew time and the blue blocks indicate 
the imaging time.  The imaging time is roughly constant 
but the slewing time is higher if the preceding image was 
of a different type (initial, response), this is because the 
spacecraft is generally slewing a greater distance (up to 0° 
! 38° lookahead) as opposed to from one initial search to 
another (maximum slew from 31° ! 38°) or from one 
response to another (from 0° ! 28°).   

12


	paper_7.pdf
	BepiColombo Science Data Storage and Downlink Optimization Tool
	2 nicola.policella@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	3 simone.fratini@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	4 jonathan.mcauliffe@esa.int, Operations Scientist, BepiColombo Science Ground Segment, ESAC, Spain
	Abstract
	Introduction
	MPO SSMM Storage and Downlink
	Radio Frequency bands
	Latency
	PID to Packet Store allocation
	SSMM packet stores priorities
	Science Data Downlink Mechanisms
	On-Board Data Storage and Downlink Modelling
	Problem Rationale
	SSMM AI Tool Description
	Model-Based Representation with Timelines
	Solving Approach
	Flow Network Model
	Solving Methods
	Finding a downlink plan
	Iterative Leveling: Improving Latency
	Conclusions
	References

	paper_13a.pdf
	Daniel Tran* and Mark D. Johnston*
	Abstract

	1. Introduction
	2. DSN Scheduling: Process and Software
	3. Scheduling in the Follow-the-Sun Era
	4. The Role of Link Complexity
	5. Prototype and Experiments
	Link Assignment Algorithm
	User Interface

	6. Results and Conclusions
	Bibliography

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	Preface3.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee




